Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance.

نویسندگان

  • Peter E Thelwall
  • Samuel C Grant
  • Greg J Stanisz
  • Stephen J Blackband
چکیده

A tissue model composed of erythrocyte ghosts was developed to study the effects of compartmentation on the MR signal acquired from biological tissues. This simple and flexible model offers control over the biophysical parameters that contribute to multicomponent signals arising from cellular systems. Cell density, size, intra- and extracellular composition, and membrane permeability can be independently altered. The effects of cell density and cell size on water diffusion properties were assessed. The data demonstrate non-monoexponential water diffusion in ghost cell suspensions of 17-67% cell density. Data were analysed with the widely employed two-compartment (biexponential) model, and with a two-compartment model that accounted for exchange between compartments. Water exchange between the intra- and extracellular compartments appeared to be significant over the range of diffusion times studied (7-35 ms). The biexponential fit to the ghost data appeared to be underparameterised as the ADCs and relative fractions of the fast and slow components were dependent on the experimental acquisition parameters, specifically the diffusion time. However, both analysis methods proved effective at tracking changes in the ghost model when it was perturbed. This was demonstrated with cell density variation, cell swelling and shrinkage experiments, and reduction of membrane water permeability using a water channel blocker (pCMBS). We anticipate that this model system could be used to investigate compartmental diffusion effects to simulate a range of pathologies, especially ischemic stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal.

This report introduces a novel method to characterize the diffusion-time dependence of the diffusion-weighted magnetic resonance (MR) signal in biological tissues. The approach utilizes the theory of diffusion in disordered media where two parameters, the random walk dimension and the spectral dimension, describe the evolution of the average propagators obtained from q-space MR experiments. The...

متن کامل

Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...

متن کامل

Modeling Brain Growth and Development

Many mental illnesses are thought to have their origins at early stages of development, encouraging increased research effort related to early neurodevelopment. Magnetic resonance imaging (MRI) has provided us with an unprecedented view of the brain in vivo. More recently, diffusion tensor imaging (DTI/DT-MRI), a magnetic resonance imaging technique, has enabled the characterization of the micr...

متن کامل

A Fractal Based Model of Diffusion MRI in Cortical Grey Matter

Diffusion Weighted Magnetic Resonance (DWMR) Imaging is an important tool in diagnostic neuroimaging, but the biophysical basis of the DWMR signal from biological tissue is not entirely understood. Testable, theoretical models relating the DWMR signal to the tissue, therefore, are crucial. This work presents a toy version of such a model of water DWMR signals in brain grey matter. The model is ...

متن کامل

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2002